597 research outputs found

    Beyond the hybrid library : libraries in a Web 2.0 world

    Get PDF
    Considers the development of social networking and the concept of Web 2.0. Looks at the implications for libraries and how traditional competences remain relevant. Explores what libraries are doing and must do to remain relevan

    On the equivalence of the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection

    Full text link
    In the framework of the Einstein-Palatini formalism, even though the projective transformation connecting the arbitrary connection with the Levi Civita connection has been floating in the literature for a long time and perhaps the result was implicitly known in the affine gravity community, yet as far as we know Julia and Silva were the first to realise its gauge character. We rederive this result by using the Rosenfeld-Dirac-Bergmann approach to constrained Hamiltonian systems and do a comprehensive self contained analysis establishing the equivalence of the Einstein-Palatini and the metric formulations without having to impose the gauge choice that the connection is symmetric. We also make contact with the the Einstein-Cartan theory when the matter Lagrangian has fermions.Comment: 18 pages. Slight change in the title and wording of some sections to emphasize the main results. References added. Matches published versio

    Gravitation, electromagnetism and cosmological constant in purely affine gravity

    Full text link
    The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, that has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the metric Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric tensor is not well-defined. This feature indicates that, for the Ferraris-Kijowski model to be physical, there must exist a background field that depends on the Ricci tensor. The simplest possibility, supported by recent astronomical observations, is the cosmological constant, generated in the purely affine formulation of gravity by the Eddington Lagrangian. In this paper we combine the electromagnetic field and the cosmological constant in the purely affine formulation. We show that the sum of the two affine (Eddington and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of the analogous (Λ\LambdaCDM and Einstein-Maxwell) Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid, like the affine Einstein-Born-Infeld formulation, only for weak electromagnetic fields, on the order of the magnetic field in outer space of the Solar System. Therefore the purely affine formulation that combines gravity, electromagnetism and cosmological constant cannot be a simple sum of affine terms corresponding separately to these fields. A quite complicated form of the affine equivalent of the metric Einstein-Maxwell-Λ\Lambda Lagrangian suggests that Nature can be described by a simpler affine Lagrangian, leading to modifications of the Einstein-Maxwell-Λ\LambdaCDM theory for electromagnetic fields that contribute to the spacetime curvature on the same order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio

    Raman coupler for a trapped two-component quantum-degenerate Fermi gas

    Full text link
    We investigate theoretically the Raman coupling between two internal states of a trapped low-density quantum-degenerate Fermi gas. In general, the trap frequencies associated with the two internal states can be different, leading to the onset of collapses and revivals in the population difference of the two internal states. This behavior can be changed drastically by two-body collisions. In particular, we show that under appropriate conditions they can suppress the dephasing leading to the collapse of the population difference, and restore almost full Rabi oscillations between the two internal states. These results are compared and contrasted to those for a quantum-degenerate bosonic gas.Comment: 7 pages incl. 7 PostScript figures (.eps), LaTeX using RevTeX4, submitted to Phys. Rev. A, modified versio

    Darboux coordinates for the Hamiltonian of first order Einstein-Cartan gravity

    Full text link
    Based on preliminary analysis of the Hamiltonian formulation of the first order Einstein-Cartan action (arXiv:0902.0856 [gr-qc] and arXiv:0907.1553 [gr-qc]) we derive the Darboux coordinates, which are a unique and uniform change of variables preserving equivalence with the original action in all spacetime dimensions higher than two. Considerable simplification of the Hamiltonian formulation using the Darboux coordinates, compared with direct analysis, is explicitly demonstrated. Even an incomplete Hamiltonian analysis in combination with known symmetries of the Einstein-Cartan action and the equivalence of Hamiltonian and Lagrangian formulations allows us to unambiguously conclude that the \textit{unique} \textit{gauge} invariances generated by the first class constraints of the Einstein-Cartan action and the corresponding Hamiltonian are \textit{translation and rotation in the tangent space}. Diffeomorphism invariance, though a manifest invariance of the action, is not generated by the first class constraints of the theory.Comment: 44 pages, references are added, organization of material is slightly modified (additional section is introduced), more details of calculation of the Dirac bracket between translational and rotational constraints are provide

    Cosmological spacetimes balanced by a scale covariant scalar field

    Full text link
    A scale invariant, Weyl geometric, Lagrangian approach to cosmology is explored, with a a scalar field phi of (scale) weight -1 as a crucial ingredient besides classical matter \cite{Tann:Diss,Drechsler:Higgs}. For a particularly simple class of Weyl geometric models (called {\em Einstein-Weyl universes}) the Klein-Gordon equation for phi is explicitly solvable. In this case the energy-stress tensor of the scalar field consists of a vacuum-like term Lambda g_{mu nu} with variable coefficient Lambda, depending on matter density and spacetime geometry, and of a dark matter like term. Under certain assumptions on parameter constellations, the energy-stress tensor of the phi-field keeps Einstein-Weyl universes in locally stable equilibrium. A short glance at observational data, in particular supernovae Ia (Riess ea 2007), shows interesting empirical properties of these models.Comment: 28 pages, 1 figure, accepted by Foundations of Physic

    Symmetric Hyperbolic System in the Self-dual Teleparallel Gravity

    Full text link
    In order to discuss the well-posed initial value formulation of the teleparallel gravity and apply it to numerical relativity a symmetric hyperbolic system in the self-dual teleparallel gravity which is equivalent to the Ashtekar formulation is posed. This system is different from the ones in other works by that the reality condition of the spatial metric is included in the symmetric hyperbolicity and then is no longer an independent condition. In addition the constraint equations of this system are rather simpler than the ones in other works.Comment: 8 pages, no figure

    Quantum Theory in Accelerated Frames of Reference

    Get PDF
    The observational basis of quantum theory in accelerated systems is studied. The extension of Lorentz invariance to accelerated systems via the hypothesis of locality is discussed and the limitations of this hypothesis are pointed out. The nonlocal theory of accelerated observers is briefly described. Moreover, the main observational aspects of Dirac's equation in noninertial frames of reference are presented. The Galilean invariance of nonrelativistic quantum mechanics and the mass superselection rule are examined in the light of the invariance of physical laws under inhomogeneous Lorentz transformations.Comment: 25 pages, no figures, contribution to Springer Lecture Notes in Physics (Proc. SR 2005, Potsdam, Germany, February 13 - 18, 2005

    Hadronic properties of the S_{11}(1535) studied by electroproduction off the deuteron

    Get PDF
    Properties of excited baryonic states are investigated in the context of electroproduction of baryon resonances off the deuteron. In particular, the hadronic radii and the compositeness of baryon resonances are studied for kinematic situations in which their hadronic reinteraction is the dominant contribution. Specifically, we study the reaction d(e,eS11)Nd(e,e'S_{11})N at Q21GeV2Q^2\ge 1 GeV^2 for kinematics in which the produced hadronic state reinteracts predominantly with the spectator nucleon. A comparison of constituent quark model and effective chiral Lagrangian calculations of the S11S_{11} shows substantial sensitivity to the structure of the produced resonance.Comment: 24 pages, 5 figure
    corecore